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ABSTRACT

Basic traditional parametric statistical techniques are used widely in climate studies for

characterizing the level (central tendency) and variability of variables, assessing linear relation-

ships (including trends), detection of climate change, quality control and assessment, identifica-

tion of extreme events, etc. These techniques may involve estimation of parameters such as the

mean (a measure of location), variance (a measure of scale) and correlation/regression coefficients

(measures of linear association); in addition, it is often desirable to estimate the statistical signifi-

cance of the difference between estimates of the mean from two different samples as well as the

significance of estimated measures of association. The validity of these estimates are based on un-

derlying assumptions which are sometimes not met by real climate data. Two of these assump-

tions are addressed here: normality and homogeneity (and as a special case statistical

stationarity); in particular, contamination from a relatively few “outlying values” may greatly dis-

tort the estimates. Sometimes these common techniques are used in order to identify outliers;

ironically they may fail because of the presence of the outliers!

Alternative techniques drawn from the fields of resistant, robust and nonparametric statistics

are usually much less affected by the presence of “outliers” and other forms of non-normality.

Some of the theoretical basis for the alternative techniques is presented as motivation for their use

and to provide quantitative measures for their performance as compared to the traditional tech-

niques which they may replace. While this work is by no means exhaustive, typically a couple of

suitable alternates are presented for each of the common statistical quantities/tests mentioned

above. All of the technical details needed to apply these techniques are presented in an extensive

appendix.

In regard to the issue of homogeneity of the climate record, a powerful nonparametric tech-

nique is introduced for the objective identification of “change-points” (discontinuities) in the

mean. These may arise either naturally (abrupt climate change) or as the result of errors or chang-

es in instruments, recording practices, data transmission, processing, etc. The change-point test is

able to identify multiple discontinuities and requires no “metadata” or comparison with neigh-

bouring stations; these are important considerations since instrumental changes are not always

documented and, particularly with regard to radiosonde observations, suitable neighbouring sta-

tions for “buddy checks” may not exist. However, when such auxiliary information is available it

may be used as independent confirmation of the artificial nature of the discontinuities.

The application and practical advantages of these alternative techniques are demonstrated
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using primarily actual radiosonde station data and in a few cases using some simulated (artificial)

data as well. The ease with which suitable examples were obtained from the radiosonde archive

further begs for serious consideration of these techniques in the analysis of climate data.

KEY WORDS: Robustness Nonparametric Mean Median Variance Regression Trend analysis

Correlation Rank tests Distributional tests Skewness Outliers Homogeneity

Non-normality Discontinuities Signal to noise ratio Radiosonde data quality
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1. INTRODUCTION

Recent heightened concern regarding the possible consequences of anthropogenically in-

duced “global warming” has spurred analyses of data aimed at both the detection of climate

change as well as more thorough characterization of the natural (background) climate variability.

This has in turn led to greater concern regarding the extent and especially the quality of the histor-

ical climate data base. An element common to both quality assessment for data base construction

as well as the use of data in the study of physical phenomena is the estimation of some statistical

quantities aimed at characterizing certain aspects of the data. Perhaps the most widely used are

the mean and variance, which jointly under the normal (Gaussian) assumption completely specify

the statistical distribution. Other common procedures include linear regression, linear correlation

and application of the Student’s t-test. Unfortunately, these and other traditional statistical meth-

ods are so familiar and firmly rooted in scientific analysis that infrequently are all of the implicit

assumptions behind their use seriously considered. It is not difficult to find examples from com-

mon data bases in which the behavior of the data clearly violates one or more of the underlying

assumptions in traditional statistics.

In general, but particularly in the context of quality assessment, violation of underlying as-

sumptions can have serious consequences. The dilemma faced in this regard is that in order to

identify “bad data” it is necessary to calculate statistical quantities from the “contaminated” sam-

ple. It is common practice to flag “outliers’ by expressing their distance from the estimated mean

in terms of standardized units whose scale depends upon the estimated variance. It turns out that

both the mean and the variance are poor choices for use in such a situation because their estima-

tion may be critically affected by the outliers themselves.

From within the statistical sciences there is well developed theory and extensive experience

which supports the use of special techniques which are quite tolerant to many types of “misbehav-

ior” commonly found in data. While some practitioners in the atmospheric and oceanic sciences

have made use of some of these techniques, overall they are infrequently used and not even well

known. The purpose of this paper is to introduce some of these techniques (including some of the

theory which motivates and guides their use), establish a framework for their use and further mo-

tivate and exemplify through application to some data (both real and artificial). The need for these

methods arose naturally in the course of projects dealing with the analysis and quality control of

radiosonde data; hence, most of the examples use radiosonde data. The data presented are neither

typical nor rare; they are representative of the types of behavior that arise on occasion.
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Both theory and examples are used in this paper in order to motivate the use of the tech-

niques presented. However, in order to enhance readability the main body of the text is devoted

primarily to illustrative examples and includes only a bare minimum of theory. Most of the theory,

the properties of the techniques, and the formulas and technical details needed to apply them are

found in the appendices. The casual reader will probably find it most productive to read the text

first; the appendices can be examined later in order to gain a more thorough understanding of the

theory and properties, and to determine the details needed to apply the methods.

Each subsequent section of this paper is devoted to a particular statistical topic which is

commonly addressed in the analysis of climate data. Section 2 presents alternative estimators for

some basic statistical measures (central tendency and variability); in addition, the determination

of outliers is addressed. Section 3 deals with some aspects of distributions (symmetry and equality

of distributions). Section 4 addresses discontinuities (i.e. one or more changes in the mean of a

time series). Section 5 is concerned with linear association and presents alternate techniques for

correlation and simple linear regression. A brief summary and discussion of some related issues is

given in section 6. Appendix A gives a more detailed account of some concepts and underlying

theory relevant to the methods presented in this paper along with some suggested literature for the

more ambitious reader. Appendix B presents quantitative measures for two of the properties

(breakdown bound and efficiency) of the techniques presented in this paper; these may be useful

in choosing from amongst several competing methods which may be appropriate for a particular

application. Appendix B also presents the formulas and technical details needed to implement the

techniques which have been introduced.

At this point it is appropriate to introduce several theoretical concepts which are essential to

the further discussion of the techniques presented in this paper. This discussion is somewhat casu-

al; the interested reader is referred to Appendix A which contains a more extensive treatment of

the theory. In the statistical context resistance refers to the degree of tolerance of a statistical tech-

nique (an estimator or a statistical test) to the presence of “outliers” (i.e., values which are not

characteristic of the bulk of the data). The more resistant a technique is, the less it is affected by

outliers. Another important concept is statistical efficiency, which is a relative measure of sam-

pling variability; it relates some technique of interest to some “standard technique”, which is usu-

ally the traditional method. A technique whose efficiency is less than 1 is less efficient than use of

the standard technique. For example, if a technique has an efficiency of 0.5 then use of the stan-

dard technique instead would result in a sampling variability (which relates to the uncertainty in
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the statistical estimate) of one half of that of the technique of interest.

Clearly it is desirable to maximize both resistance and efficiency since this implies broader

applicability to different types of data and less uncertainty in the estimated quantities. However,

generally speaking resistance and efficiency are competing factors; as one increases the other usu-

ally decreases. It is important to note that many commonly used statistical techniques have no re-

sistance at all. However, alternatives exist which sacrifice some efficiency in order to gain some

resistance. While simpler alternatives may sacrifice considerable efficiency, there are more so-

phisticated ones which sacrifice only modest amounts of efficiency. The remainder of this paper

illustrates these properties for some widely used, traditional techniques as well as for some alter-

native techniques (both simple and sophisticated) which are being promoted here. Typically

throughout this paper one simple and one more sophisticated alternative is presented for each

technique. The former are chosen for their simplicity while the latter for better performance (i.e.,

higher efficiency). In the main body of this paper the resistance and efficiency of the techniques

presented are referenced mostly in qualitative terms; for a quantitative treatment the reader is re-

ferred to Appendix B (which also includes the formulas and technical details needed to implement

the methods).

2. SOME BASIC STATISTICS INVOLVING LOCATION AND SCALE

2.1. Location and scale estimators

The mean and standard deviation are firmly rooted in traditional statistical estimation and

hypothesis testing and are probably the two most commonly reported quantities. They represent

quantitative measures of two characteristics of the underlying statistical distribution: location (or

central tendency), the location of the “middle” of the distribution, and scale (spread or variability),

the “width” of the distribution. Although the mean and standard deviation have no resistance, stat-

isticians have developed a considerable number of resistant alternatives. A number of these alter-

natives can be found in the references cited in Appendix A (and elsewhere) but most of these are

not introduced here. Instead, one “simple” and one “more complicated” alternative for location

and scale will be examined in some detail.

The simple resistant estimators selected are the median (M) for location and a pseudo-stan-

dard deviation based on the interquartile range (IQR) for scale. The median is simply the “middle

value” from a sample or more precisely the 0.5 quantile. The interquartile range is the difference

of the upper quartile (quantile of order 0.75) minus the lower quartile (quantile of order 0.25). The

IQR represents the distance covered by the middle half of the distribution. For a Gaussian distri-
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bution the IQR is 1.349 times the standard deviation; therefore a pseudo-standard deviation (sps)

may be defined as the IQR divided by 1.349. It should be noted that in general a pseudo-standard

deviation could be defined in other ways; however, in this paper the pseudo-standard deviation

based on the IQR is used exclusively. Both the median and IQR are conceptually and computa-

tionally simple and are recommended for use when high efficiency is not needed; for example

when a large sample size is available and/or when the nature of the work is “highly exploratory”.

When both high resistance and efficiency are desired more complex estimators which use

the biweight method are recommended here; biweight estimates of the mean (Xbi) and standard

deviation (sbi) are discussed at length in Hoaglin et al. (1983) and Hoaglin et al. (1985). Biweight

estimation is accomplished through a two-step procedure. In the first step location and scale are

estimated by the median and MAD (median absolute deviation), respectively; these resistant, but

not particularly efficient estimators are used solely to discard outliers (i.e. by assigning a zero

weight in further calculations). In the second step a weighted mean and standard deviation are cal-

culated; the weighting decreases nonlinearly (to zero) going away from the center of the distribu-

tion. More specific details regarding biweight estimation are given in Appendix B.

2.2. Location and scale examples

The first example is designed to illustrate the behavior of the mean and standard deviation,

along with the simple and more complicated resistant alternatives in the presence of one or two

outliers. An artificial sample is used to mimic what may happen in practice. While errors in obser-

vational data may arise in a number of different ways such as instrumental malfunction or faulty

logic in data processing programs, communication errors are a major source of large or “rough”

errors in the case of radiosonde data (Collins and Gandin, 1990). Examples of communication er-

rors include the loss of a minus sign, truncation of a digit or transposition of digits. Errors of this

type may occur on occasion because manual keypunching of data is still common practice today

in many countries and was even more widespread in the past.

For the first example a sample of 48 values was generated from a Gaussian random number

generator with a mean of 1000 and a standard deviation of 10; these parameters might be appro-

priate for daily values of surface pressure at some hypothetical station. This sample was augment-

ed with two additional values in three different ways. In the first case two reasonable values were

used (1016 and 1025). The second case uses two moderate outliers whose values were arrived at

by transposing the last two digits of the reasonable values (1061 and 1052). The third case con-

sists of one reasonable value and one extreme outlier arrived at by transposing digits (1016 and
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1250). These outliers mimic keypunching or transmission errors which could occur in practice.

Location and scale estimates for these three samples are given in Table 1. In order to better

appreciate differences among the different cases and estimators, transformed versions of the esti-

mates are included in parentheses. For location the parenthetical values are in the form of the Stu-

dent’s t-statistic and express how far each location estimate is from the known population mean

(1000); a value of zero indicates no difference. For scale the values in parentheses are the ratio of

the scale estimate to the known population standard deviation (10); a value of one indicates no

difference. From the values in Table 1 it can be seen that both the simple and sophisticated resis-

tant estimates of location and scale are hardly affected by the presence of moderate or extreme

outliers; the t-statistic does not depart much from zero nor does the standard deviation ratio depart

much from one. By contrast, the traditional mean and standard deviation are noticeably affected

by the outliers. It is also worth noting that for the reasonable case the biweight estimates are very

similar to the traditional ones.

Note that the biweight mean and standard deviation decrease slightly (as compared to the

reasonable case) when outliers are added; by contrast, the simple resistant estimators (median and

pseudo-standard deviation) show no change. In the reasonable case, the two reasonable, but some-

what large values are used in the biweight estimates; in the outlier cases the unreasonable values

are rejected and biweight estimates are influenced only by the first 48 or 49 values. The simpler

resistant estimators do not distinguish between the reasonable and outlier cases because of their

lower efficiency as compared to the biweights. Nevertheless, when outliers are present even the

simple alternatives are preferable to the traditional estimators due to the resistance of the former.

While the above example clearly illustrates the benefit of resistant estimators in the presence

of outliers, one might be tempted to argue that simple quality control obviates the need for resis-

tant techniques. This is not true because quality control itself may be affected by outliers and may

benefit from the use of resistant methods. The next two examples are designed to illustrate this

point. Furthermore, in some sense resistant methods have “built-in” quality control; in more com-

plex situations such as when time series are non-stationary (for example if there is a trend or dis-

continuities), or when outliers are more subtle, resistant methods can significantly reduce the

complexity of the task. Such benefits are illustrated later in this manuscript.

In the context of data quality control it is often desirable to discard “bad values” or to at least

“flag” certain values as “suspicious”. A common procedure (among non-statisticians) is to esti-

mate the mean and standard deviation, transform the original values through standardization (i.e.
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subtract the mean from each original value and then divide by the standard deviation) into “Z-

scores” and discard all values greater in absolute value than some pre-defined limit; often this

method proceeds iteratively by re-computing the mean and standard deviation, re-standardizing,

and discarding the deviant values again. This iterative procedure can be cumbersome and is ad-

hoc. Furthermore, this “outlier rejection” procedure is ill-advised since estimators derived from it

have no resistance at all. Another reason to recommend against this procedure relates to a sample

size limitation and is discussed and exemplified below.

The next example uses the two outlier sample from Table 1 to illustrate the common practice

of “outlier rejection” which is un-wise unless resistant estimators are utilized. The histogram of

these values is given in Fig. 1. Note that the outliers added here are not so severe that they could

be eliminated solely on the basis of being “physically unrealistic”. For surface pressure at the hy-

pothetical station these outliers, while quite unlikely, could occur.

The “outlier rejection” can be implemented by rejecting values outside of a confidence inter-

val about the mean using a range of plus and minus four times the standard deviation; in a Gauss-

ian distribution values lie outside this interval with a probability of less than 0.0002. Four such

intervals have been constructed using different location and scale combinations. These intervals

are plotted as “whiskers” in Fig.1 and are (from top to bottom): population (1000 and 10), sophis-

ticated resistant (biweight), simple resistant (median and pseudo-standard deviation) and tradi-

tional (mean and standard deviation). In looking at the four different confidence intervals the two

outliers are clearly flagged using both resistant combinations and the population values; only the

traditional method is unable to identify the outliers (1061 and 1052).

Although the theoretical considerations as illustrated by the examples above are compelling

enough, there is yet an additional reason to recommend strongly against the use of the “outlier re-

jection” method based on the mean and standard deviation. This additional reason (Shiffler, 1988)

is the fact that there is a sample size (n) dependent bound (Zmax) on the largest Z-score which can

occur in a finite sample:

Zmax = (n-1) / n 0.5. (1)

For example, unless the sample size is at least 11 (18) it is not possible to obtain a Z-score greater

than 3.0 (4.0). Qualitatively the explanation is that as an extreme value from a sample becomes

more deviant both the mean and standard deviation are inflated, thereby providing a negative feed-

back on Z.

The following simple example illustrates the importance of resistant measures in outlier de-
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tection in small samples in light of the above constraint on the Z-scores. The data sample (of ten

values) consists of the nine values: 1.01, 1.02, …, 1.09, plus 1000. Table 2 presents the location,

scale and largest Z-score for this sample using the traditional mean and standard deviation as

compared to the biweight estimates of the same. The extremely large biweight Z-score is consis-

tent with one’s intuition that the value of 1000 is a very extreme outlier; use of the median and

pseudo-standard deviation (not shown) produce similar results. However, the bound on Zmax us-

ing the traditional estimators prevents this outlier from even attaining a Z-score of 3.0 which

would normally be the smallest reasonable outlier cutoff value (corresponding to a Gaussian prob-

ability of about 0.0025). Not coincidentally the maximum Z-score value reported in Table 2 for

the traditional method corresponds almost exactly to the value arrived at from evaluating (1) for a

sample size of 10.

The final example of this subsection is intended to illustrate the benefits of resistant estima-

tion (of scale) in a realistic setting. The data consist of 850 hPa specific humidity measured during

April at the Jan Mayen Island radiosonde station (71o N, 8o W) and were obtained from an updat-

ed version of the archive maintained at the Geophysical Fluid Dynamics Laboratory (GFDL) by

Oort (1983); these data were originally provided by Roy Jenne of the National Center for Atmo-

spheric Research (NCAR). All available soundings during the period 1974-93 were used.

Two different estimates of the intramonthly standard deviation of April specific humidity are

shown in Fig. 2. The thin solid curve is the biweight standard deviation while the heavy dashed

curve is the traditional standard deviation. For the traditional estimate quality control of the type

typically performed was applied; for the biweight there was no explicit quality control. The quali-

ty control consisted of first using all available values to estimate a climatological mean and stan-

dard deviation and then discarding outliers (defined as values more than 5 standard deviations

from the mean). Using this “cleaned-up” sample the outlier rejection procedure was again ap-

plied.

As can be seen from Fig. 2 the traditional and biweight estimates are quite similar most of

the time. However, in a few instances the biweight gives much lower estimates. In particular the

years 1976 and 1988 are characterized as the two lowest variability years by the biweight but as

somewhat more variable than normal by the traditional estimate. These two cases will be exam-

ined in greater detail through the use of histograms. In addition, the year 1980 will be used as a

reference year since the two methods yield almost identical values, characterizing it as one of the

more highly variable years.
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Histograms for the three selected years (1988, 1976 and 1980) are shown in Fig. 3. Based on

visual inspection it is apparent that for 1988 and 1976 there is peakedness and considerable con-

centration of mass near the centers of the distributions. In contrast, the distribution for 1980 has

the bulk of its mass spread out over a greater range and over this range it is fairly flat. These histo-

grams suggest that the biweight has produced estimates more in line with intuition. The mislead-

ing traditional estimates are at least partially the result of a few infrequent large values which

occurred during 1988 and 1976. Cursory examination of daily time series (not shown) suggests

that these are legitimate values representing relatively rare (but not unreasonable from a climato-

logical standpoint) synoptic events characterized by intrusions of moist, lower latitude air. Anoth-

er noteworthy point is the difference in the shape of the distributions between 1988/1976 and

1980 and their distinct non-Gaussian character. Simulations by Hoaglin et al. (1983) and Staudte

and Sheather (1990) have demonstrated that when the underlying distribution is not Gaussian re-

sistant location and scale estimators can be considerably more efficient than traditional ones.

3. SOME BASIC STATISTICS INVOLVING ASPECTS OF DISTRIBUTIONS

3.1. Distributional tests and symmetry

The Gaussian distribution is symmetric about its mean (which is equal to its median) and

thus is not skewed. While many variables in nature follow a Gaussian distribution there are in-

stances where a skewed or asymmetric distribution is appropriate. For example, precipitation

amounts usually follow the Gamma distribution (Wilks, 1990). For asymmetric distributions out-

lier identification using Z-scores or confidence intervals based on the estimated scale (even if it is

resistant) may not be appropriate. Perhaps the best course of action is to fit a parametric distribu-

tion to the sample; another reasonable approach is use of some transformation which renders

Gaussian values. Unfortunately in the course of exploratory data analysis, and particularly for

large multivariate data sets, this may not be easily accomplished due to lack of suitable fit, the

large number of possible distributions or transformations, or a prohibitive amount of effort re-

quired. An alternative introduced here is to define separate measures of scale for the upper and

lower tails of the unknown, asymmetric distribution.

The simple alternative suggested here is referred to as an asymmetric pseudo-standard devi-

ation which consists of an upper and a lower pseudo-standard deviation. The upper (lower) pseu-

do-standard deviation is defined as twice the distance between the upper (lower) quartile and the

median divided by 1.349. These can be used to construct an asymmetric confidence interval for

outlier flagging, etc., based on the same rationale as for a symmetric confidence interval based on
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the pseudo-standard deviation except that the upper and lower bounds are based on separate esti-

mates of scale. An important caution is that asymmetry should not be assumed unless there is

good a priori evidence (such as physical insight of the system) and/or a posteriori evidence (ap-

propriate statistical testing). A consequence of the use of these asymmetric scale estimators (as

shown in Appendix B) is a considerable drop (about half) in efficiency compared to the symmetric

counterpart (which has low efficiency itself). Because of the resulting low efficiency this approach

may only be practical when the sample size is large and of course when the confidence that the

distribution is truly asymmetric is high. It is also possible to define an asymmetric version of the

biweight standard deviation for which the efficiency is far more reasonable (~50%); see Appendix

B for details.

A measure of confidence in the asymmetry can be gained through a statistical test of the

symmetry of a distribution. The method introduced here to test for asymmetry is a simple modifi-

cation (see Appendix B for technical details) of a test for the equality of two sample distributions,

which is of value in its own right. The modification is simply to partition a sample into two parts;

each part is then treated as a separate sample in the two sample distributional test. One partition

consists of all of the values on one side of the median. The other partition consists of the values on

the other side of the median reflected across the median. For a symmetric distribution one side of

the distribution and the mirror image of the other side of the distribution will be indistinguishable.

Two nonparametric distributional tests which utilize ranks are presented here (see Appendix

B for details) for use in testing asymmetry or for simply testing the equality of two distributions.

The first is the Wilcoxon-Mann-Whitney test which can be used to test the equality of the medians

of two distributions and is one of the most powerful nonparametric tests (Siegel and Castellan,

1988). An assumption of the Wilcoxon-Mann-Whitney test is that the two distributions have equal

variances. Another two sample test for the equality of medians in which equality of variances is

not assumed (the Behrens-Fisher problem) is the robust rank-order test, which has essentially the

same power efficiency as the Wilcoxon-Mann-Whitney test (Siegel and Castellan, 1988).

3.2. Distributional/symmetry example

The example used to illustrate the symmetry testing and confidence interval generation con-

sists of all available values of the July 1000 hPa specific humidity at Barrow, Alaska from 1973-

89; these data were obtained from the GFDL radiosonde archive. The histogram of these values

(shown in Fig. 4) is intriguing as it indicates a positively skewed distribution with a sharp drop-off

from the middle to the lower tail of the distribution. It can be speculated that the tendency for ap-
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proximately a lower (hard) limit is due to the dominance of snow and ice melt during this time of

year; the apparent lower limit is near the saturation specific humidity at the freezing point of wa-

ter. The symmetry test is very confidently rejected with a significance level less than 0.001%. The

location and scale estimates for this sample are given in Table 3. The most striking aspect of the

estimates is the fact that the upper pseudo-standard deviation is about twice that of its lower coun-

terpart; the symmetric scale estimates are a compromise between the two. The asymmetric scale

estimates seem reasonable from visual inspection because the upper half of the distribution is con-

siderably more “strung out” than the lower half.

Although the distribution in Fig. 4 is asymmetric and unusual there is nothing about its ap-

pearance that suggests contamination with “bad” outlying values. It seems reasonable to assume

that it is a “clean” sample from some unknown, asymmetric distribution. As such, a centered (1 -

)% confidence interval should exclude roughly /2% of the sample in each tail provided that

is not “too small” for the given sample size. Confidence intervals for two levels (50% and 95%)

based on the traditional, simple symmetric resistant and simple asymmetric resistant estimators

are given in Table 4. The symmetric resistant interval fares poorly near the center of the distribu-

tion (50% level) as well as in the tails (95% level). Because of a compromise estimate of scale it

extends too far to the left (leaves too little in the left tail) but not far enough to the right (leaves too

much in the right tail). The traditional interval fares well in the center (50%) due to compensating

effects; it has the same problem with scale as the symmetric estimator, but has a (less reasonable)

larger estimate of location which shifts the interval to the right. For the 95% level the traditional

estimate does poorly with the same bias as the symmetric. The asymmetric interval fares well for

both levels in terms of total coverage and balance between the tails. Of course when resistance is

considered (not a factor in this example but more important in general) the traditional estimators

are downgraded even more and the asymmetric resistant interval estimator emerges as an even

clearer winner.

4. DISCONTINUITIES

4.1. The change-point problem

Statistical stationarity (homogeneity of a time series) is one of the most fundamental as-

sumptions of most statistical tests and procedures. The change-point problem addresses a lack of

stationarity in a sequence of random variables (values). Given a sequence of values a change-point

is said to occur at some point in the sequence if all of the values up to and including it share a

common statistical distribution while all those after the point share another. The most common



John R. Lanzante

11

change-point problem involves a change (discontinuity) in the level (mean) and is the focus here.

Testing for non-stationarity due to a change in the dispersion (variance) has been addressed re-

cently by Downton and Katz (1993) although not in a resistant framework. While it may be possi-

ble to develop such a resistant test based on the ANOVA approach of Best (1994) this will be left

for future work since there are technical difficulties in extending the change-point test from the

mean to the variance (Moses, 1963).

There are a number of possible causes for discontinuities in climate related time series. In

recent years there has been increased concern with and awareness of inhomogeneities in data

from surface (e.g. Easterling and Peterson, 1995) as well as upper-air stations (e.g. Elliott and

Gaffen, 1991; Gaffen, 1994; Parker and Cox, 1995). Station moves (change in elevation and or

microclimate), change in instrumentation (new sensor or type of sensor) or recording practice

(new time of observation, change in reduction algorithm) are just some of the things that can re-

sult in an artificial (non-climatic) inhomogeneity in station data. Artificial discontinuities exist in

data sets produced operationally at numerical weather prediction centers (e.g. Barnston and

Livezey, 1987; Lambert, 1990) due to periodic changes in the numerical model and/or analysis

schemes. Discontinuities may occur in remotely sensed data as well; Chelliah and Arkin (1992)

found that time series of outgoing longwave radiation contain multiple discontinuities due to the

use of different satellites (which have different crossing times and spectral windows). Of course

not all discontinuities are artificial, such as the onset of Sahel drought (Demaree and Nicolis,

1990) or the shift in global climate variables around 1976/77 (Trenberth, 1990).

Easterling and Peterson (1995) review various methods used by meteorologists to identify

change-points and propose a new method. Approaches used in the past typically rely either on

comparison with a reference series (which presumably does not have any of the discontinuities

which may lurk in the series to be checked) constructed from neighbouring station(s) and/or the

use of metadata (station history information). Examples of the former include Hanssen-Bauer and

Forland (1994), Portman (1993) and Potter (1981) while the latter includes Karl and Williams

(1987). While both approaches are worthwhile and valid, they each have disadvantages. Use of a

reference series is dependent on the proper selection and weighting of the individual series. This

approach may be feasible for surface stations which normally have a number of suitable neigh-

bours and for which most changes occur on a station by station basis. However, the upper-air net-

work of stations is much sparser so suitable neighbours may not exist; also, changes often occur

by country so neighbouring stations may have the same discontinuities. Station history informa-
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tion (metadata) is not always available or complete; in addition, some documented changes may

not result in any discontinuity.

The method proposed here does not depend on “outside information” such as reference se-

ries or metadata so it is more widely applicable. Also, it may be desirable to test for real climatic

discontinuities where such information is not relevant. Nevertheless, when artificial change is the

issue, once this method has identified candidate change-points it would be advisable to seek con-

firmation using, for example, history information and/or the results of this test applied to neigh-

bouring stations. In particular, the fact that this test produces independent results for each station

as opposed to the dependence inherent to methods involving reference series may be desirable. Fi-

nally, the procedure proposed here, unlike the other methods surveyed in the literature, utilizes

nonparametric, resistant and robust principles which makes it much more resilient in the presence

of outliers and other non-standard behavior.

Several principles may be utilized to interpret the results of independent application of the

change-point test to different stations. A change-point found at a station but not at neighbouring

stations suggests local causes which are probably artificial. Change-points which are shared by

some stations from the same country but which vanish across the border of nearby countries are

also likely to be artificial. The concept of “neighbour” can be extended to the vertical as well as to

other climate variables. Real climate changes would probably have some coherence in the vertical

and with other parameters. Finally, an abrupt climate change might be evidenced by a change of

opposite sign at a distance of one half a wavelength through a “teleconnection”. While none of

these approaches may be conclusive in isolation, when taken together they may present strong ev-

idence of either natural or artificial change.

4.2. Overview of the change-point procedure

The procedure proposed here is an iterative one designed to search for multiple change-

points in an arbitrary time series. It involves the application of a nonparametric test, related to the

Wilcoxon-Mann-Whitney test discussed earlier, followed by an adjustment step; iteration contin-

ues until the test statistic is no longer significant or if other conditions occur (see Appendix B for

details). Upon completion auxiliary measures are computed in order to aid in the interpretation.

While the single change-point test is due to Siegel and Castellan (1988), the procedure used to ap-

ply it to the multiple change-point problem and the auxiliary measures have been developed here.

The change-point test (Siegel and Castellan, 1988) uses a statistic computed at each point

based on the sum of the ranks of the values from the beginning to the point in question. It seeks to
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find a single change-point in the series. Because it is based on ranks this test is not adversely af-

fected by outliers and can be used when the time series has gaps; it is likely to be highly efficient

(Siegel and Castellan, 1988). However, the significance of the test statistic can not be evaluated

confidently within ten points of the ends of the time series so change-points can not be evaluated

at the beginning or end; the technical details of the test are given in Appendix B.

As the iteration proceeds each new change-point is added to an ordered list which includes

the first and last points of the series as well. At each step, consecutive points from the list are used

to define change-point segments. A resistant location estimator (the median is used here) is com-

puted separately for each segment and subtracted yielding an adjusted series which is re-submit-

ted to the change-point test in the next iteration.

After completing iteration a change-point (or discontinuity) “signal to noise” ratio which

quantifies the magnitude of each discontinuity is computed. This quantity is computed for each

change-point using the two adjacent change-point segments. This resistant signal to noise ratio

expresses the magnitude of the discontinuity in terms of the ratio of the variance associated with

the shift in level between the adjacent segments relative to the “background” variability or “noise”

within each segment.

The procedure described above (and detailed in Appendix B) has been tested on a number of

time series of different character, both real and contrived and has performed quite well. It is quite

sensitive and is capable of detecting subtle changes. The amount of sensitivity can be controlled

by the level of significance required. Obvious discontinuities tend to produce extremely signifi-

cant results. While experience suggests that a significance level of 1% would be reasonable it is

recommended that the investigator apply this procedure to a few “favorite” time series to aid in

deciding on the level of sensitivity (i.e. required significance).

Recently a new method for detecting discontinuities has been proposed by Easterling and

Peterson (1995). They have made comparisons of existing methods using simulations involving

artificial time series for an ensemble of scenarios; the interested reader is directed to their paper

for the details of the simulations. They have concluded that their method (hereafter referred to as

the EP method) performs best of the methods examined. The method presented here (hereafter re-

ferred to as the L method) has been applied to an ensemble similar to theirs and the results (corre-

sponding to their Table 2) have been evaluated. In the interest of brevity only the major

conclusions are presented. Based on the scenarios used the two methods appear to be comparable

overall. The L method identified slightly fewer of the discontinuities but had a slightly lower
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“false alarm” rate. Based on the different scenarios it appears as if the L method is a bit more sen-

sitive (can detect weaker discontinuities) and performs better overall if the discontinuities are not

too close (separated by at least 25 points). On the other hand the EP method seemed to have an ad-

vantage when the discontinuities were closely spaced (separated by only 10-15 points). The simu-

lations were all based on Gaussian random numbers and did not include any outliers. Since the EP

method is based on least squares linear regression, while the L method utilizes ranks, the L meth-

od has a distinct advantage in terms of resistance. The resistance of the L method can be appreci-

ated in the Veracruz example which is discussed below.

4.3. Change-point examples

The first example uses a time series of monthly anomalies of 200 hPa geopotential height at

the Royal Observatory in Hong Kong from 1950-60 and is shown in Fig. 5. These data were taken

from the TD54 data set which was obtained by Roy Jenne for use in the NMC/NCAR reanalysis

project (Kalnay and Jenne, 1991). Note that although 5 months were unavailable due to missing

values in the original data set the change-point test is not adversely affected. The use of this par-

ticular time series was motivated by Gaffen (1994) who discovered a large discontinuity in 200

hPa temperature corresponding to the introduction (during July 1955) of a new radiation correc-

tion applied to the temperature measurements. The presence of the discontinuity in both time se-

ries is not surprising since geopotential height at radiosonde stations is derived directly from the

measured temperature using the hydrostatic equation. Application of the change-point test identi-

fied July 1955 as the change-point; the significance is extreme (much better than 0.01%). The dis-

continuity signal to noise ratio is 1.63 indicating that the variance associated with the change in

means is more than one and a half times the variance associated with variability about the separate

segment means.

Neglect of non-stationarity such as that associated with a discontinuity in the mean can have

serious consequences in statistical estimation and testing. Such a sample is inhomogeneous since

it represents a mixture distribution resulting from sampling two distinct populations. This is evi-

dent in Fig. 6 which has histograms of the values of the time series in Fig. 5 before (top) and after

(bottom) correction for the discontinuity. Before correction the histogram is quite flat and hints at

bimodality; after eliminating the discontinuity the resulting distribution is considerably narrower

and looks much more reasonable (Gaussian). A quantitative assessment can be made by examin-

ing the biweight means and standard deviations computed from the whole series and separately

from the two segments as shown in Table 5. In concert with visual inspection of the histograms,
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Table 5 confirms that neglect of the discontinuity (“overall”) artificially inflates the standard devi-

ation by nearly a factor of two.

In order to illustrate the effect of the discontinuity on the assessment of deviancy some addi-

tional statistics have been calculated and are given in Table 5. These correspond to a hypothetical

anomaly of -90 (m). The deviancy is quantified by expressing the anomaly as a Z-score. Ignoring

the discontinuity (overall) this anomaly would be viewed as somewhat but not extremely deviant

regardless of its position in the time series; the Z-score corresponds to a rate of occurrence of

roughly one in 35. Intuitively (see Fig. 5) it would seem that this anomaly should be regarded as

much more deviant if it were to occur in the left segment as compared to the right segment. The Z-

scores computed from the separate segment means and standard deviations confirm intuition as do

the calculations after correction; for the left segment the occurrence rate is roughly one in a mil-

lion.

The next example, which illustrates the multiple change-point problem, uses monthly anom-

alies of 700 hPa geopotential height at Veracruz, Mexico from 1952-92. These data were extracted

from the four CD set “Radiosonde Data of North America, 1946-1992” produced jointly by the

National Climatic Data Center (NCDC) and the Forecast Systems Laboratory (FSL). The time se-

ries, change-points and segments shown in Fig. 7 are based on application of the iterative change-

point method requiring change-points to be significant at the 1% level. This example is much

more demanding than the previous one due to the multiple change-points and less dramatic

change in means; the latter highlights the sensitivity of the method. The resistance of the method

is indicated by the presence of several prominent outliers, particularly the one in the early 1960’s.

Several gaps due to missing data have no adverse affect. Statistics which quantify the change-

point segments are given in Table 6. The probabilities indicate that the five change-points were all

confidently identified. The change-points all have a lower signal to noise ratio than for the Hong

Kong example (1.63), in particular, change-points three and five.

The final example of this section is concerned with a problem which may occur when aver-

aging time series which have discontinuities. It is common practice in meteorology to compute re-

gional, zonal, hemispheric, global, etc., averages based on a number of gridpoint or station time

series. If the constituent time series have discontinuities which occur at different times but which

delineate either systematic increases or decreases then the resulting average time series may mim-

ic a trend even if none of the constituent series had one.

Historically, the introduction of new radiosonde humidity sensors has led systematically to
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artificial decreases in upper tropospheric humidity with time at some stations (Elliott and Gaffen,

1991). However, these decreases are usually evidenced as a step function in the station time series

when the new sensor is introduced. The times of these changes generally vary by country, al-

though even within a country introduction of new sensors may vary from station to station. This

raises concern that averaging upper tropospheric humidity measurements may result in a “bogus”

downward trend.

The example used to illustrate this “bogus trend” problem is based on alteration of the time

series of Fig. 5. which has a prominent change-point in the middle of the time series. Two addi-

tional time series were constructed from this one by shifting the change-point either towards the

beginning or end (by adding or subtracting means from one segment to values in the other seg-

ment). The three time series were then averaged together and are shown in Fig. 8. This average

time series exhibits an apparent downward trend from the first to the third change-points without

any obvious discontinuities. A smoother trend could be obtained by averaging more time series.

5. LINEAR ASSOCIATION

5.1. Correlation and regression

Correlation and simple linear regression are probably the most widely used techniques for

assessing the linear relationship between two variables. Like the univariate measures discussed

earlier these too may be adversely affected by data misbehavior. Regression is also used in trend

analysis which may be useful in assessment of either real climate change (such as “global warm-

ing”) or artificial change. Examples of artificial change include trends such as that associated with

“drift” in an instrument (e.g. ground based thermometer or satellite sensor), the effect of urbaniza-

tion on surface temperature, the change from “bucket” to “intake” sea surface temperature mea-

surements and the change-over from the use of the Beaufort scale to anemometers for wind speed.

The (Pearson product-moment) correlation coefficient is the most powerful parametric cor-

relation (Siegel and Castellan, 1988); however, it may be adversely affected by outliers and for as-

sessment of significance it requires that the observations are sampled from a bivariate normal

distribution. A nonparametric alternative presented here is the Spearman rank-order correlation

coefficient (Siegel and Castellan, 1988) which is computed by ranking (separately) the two vari-

ables and then correlating their ranks (see Appendix B for technical details).

One way to perform resistant regression is via three-group resistant regression (Hoaglin et

al., 1983). For this method (see Appendix B for technical details) the sample is subdivided into

three groups based on the abscissas. The median coordinates of the left and right groups are used
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to define a line which serves as a starting point for an iterative process; a special procedure insures

convergence to a final solution. The other resistant regression method presented here is based on

the median of pairwise slopes (see Appendix B for technical details) and was used recently in the

assessment of hydro-climatic trends (Lettenmaier et al., 1994). It involves the computation of the

slopes defined by all possible pairs of points; the final slope estimate is the median of these values.

Since significance tests are not provided for these regression techniques the significance of the

Spearman correlation coefficient will be used instead.

The choice between these two techniques for resistant regression may well hinge on the

sample size as well as the computing power available. For very small samples both are efficient

(see Appendix B). As the sample size increases the pairwise slopes method becomes slightly

more efficient while the three-group method becomes much less efficient. This can be explained

by the fact that the three-group method initially reduces the information from all of the points to a

slope computed from just two summary points; the larger the number of points the larger the rela-

tive reduction (and “loss of information”). By contrast, the number of slopes computed by the

pairwise slopes method increases with the sample size. Based on its greater efficiency and resis-

tance the pairwise slopes method seems preferable. Unfortunately the computational expense

(number of pairs) grows explosively with the sample size so that for larger sample sizes it may be

necessary to use the three-group method.

5.2. Correlation and regression examples

The first example used to illustrate resistant regression and correlation is a segment of thirty

months (August 1951 - January 1954) from the time series of Hong Kong 200 hPa height anomaly

shown earlier (Fig. 5). This segment was chosen since a line fit to it by eye appears to have a slope

of zero. This sample was perturbed by adding 200 m to the last value in the series. Both least

squares and median of pairwise slopes regression were applied to the original and outlier cases.

The time series and these four lines are shown in Fig. 9 while the relevant correlation and regres-

sion statistics are given in Table 7.

For the original time series the parametric and resistant estimates differ only slightly. The

addition of the outlier changes the resistant estimators much less than the parametric ones. By

contaminating only one out of the thirty values the least squares slope has been inflated by a factor

of 35 while the resistant slope has increased by less than a factor of 4. Note that the least squares

intercept has also been largely affected by the outlier. As seen in Fig. 9 the resistant line attempts

to represent the bulk of the data faithfully whereas the least squares line is skewed by a single out-
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lier. The resistant fit is more reasonable and appealing.

The final example of this paper is taken from analyses performed by Sun and Oort (1995)

and Sun and Held (1996) which relate tropically averaged temperature and humidity; the data,

which represent temporally filtered spatial averages of an updated version of the gridpoint values

produced by Oort (1983) were kindly provided by D-Z. Sun. Fig. 10 shows time series of tropical-

ly averaged monthly temperature (light curves), T, and specific humidity (dark curves), q, for the

500 (top) and 850 hPa levels (bottom) for the period 1963-88. In order to facilitate cross-compar-

ison each curve has been standardized to zero mean and unit variance. In general, variations in T

and q follow each other reasonably well at both levels. However, two major exceptions can be

seen at 500 hPa. During 1968 there is a suspicious downward spike of T which is not reflected in

q and is only very weakly apparent at 850 hPa. In addition, during the 1982-83 El Nino event T

and q uncharacteristically depart in opposite directions at 500 hPa. Sun and Oort (1995) suggest

that departures such as these may be due partly to very unusual conditions during the 1982-83

event and partly to the irregular distribution of radiosonde stations. Since the reliability of radio-

sonde measurements decreases with height above the surface, observational problems may be

greater in the upper troposphere.

An x-y plot of the 500 hPa T and q from Fig. 10 is shown in Fig. 11. Each point is represent-

ed by a star except for the unusual periods near 1968 (circles) and 1982-83 (squares). It can be

seen that points during the two unusual periods represent outliers. However, it is important to note

that typical univariate quality control would not flag these points as outliers since neither their x

nor y coordinates are outliers; they are outliers in the bivariate sense. This is another instance

which demonstrates that good quality control does not obviate the need for resistant methods.

By chance it turns out that the two uncharacteristic time periods act in the same sense. As

seen in Fig. 11 the least squares regression line (solid) is rotated clockwise from the resistant line

(dashed) in an attempt to be more “accommodating” to the outlying points. Sun and Held (1996)

used these same data to examine the radiative feedback of water vapor as quantified by the frac-

tional rate of increase of q with T (which is proportional to the slope of the line fit to T and q). Fig.

12 displays a plot of this quantity as a function of height (pressure level) in which the dark curve

is based on least squares regression and the light curve on resistant regression. The dashed curve

is a reference curve based on the assumption of constant relative humidity. From this plot it can be

seen that while least squares and resistant regression differ only a little in the lower troposphere, at

upper levels the resistant line is noticeably closer to the reference curve.
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6. SUMMARY AND DISCUSSION

Traditional statistical methods widely used in research are based on a number of fundamen-

tal assumptions which all too often are violated in practice. Violations of the assumptions consid-

ered here include the presence of outliers, non-Gaussian behavior and statistical nonstationarity.

Alternative techniques from resistant, robust and nonparametric statistics can often be used when

these assumptions are not met. While these alternative techniques are less likely to “break down”

in the presence of outliers or other data misbehavior due to their increased resistance, they tend to

be less efficient (i.e. have larger sampling variability) when the data are “well behaved”. An effort

has been made here to present a couple of alternative techniques to be used in the estimation of lo-

cation (central tendency), scale (spread or dispersion) and simple bivariate linear association (cor-

relation and regression); symmetry and the testing for differences in distributions has also been

addressed. The simpler alternatives tend to be computationally and conceptually simpler at the ex-

pense of statistical efficiency. More sophisticated alternatives combine resistance with a high level

of efficiency at the expense of some increased effort and complexity.

The problem of statistical inhomogeneity or nonstationarity (changes in the statistical distri-

butional properties over time) is a violation of the most fundamental assumption addressed here.

A procedure has been developed to identify multiple step function like changes in the level (cen-

tral tendency) over time by using a nonparametric “change-point” test. Correction of time series

to eliminate these discontinuities as well as trend removal (using a resistant technique) can go a

long way towards satisfying the assumption of stationarity.

A couple of points which arose in some of the examples but which were not mentioned ex-

plicitly deserve comment for their more general applicability to all of the techniques presented

here. In some of the examples monthly anomalies were analyzed for consecutive months. It was

implicitly assumed that: (1) the values are independent and (2) that the relationships are homoge-

neous across the seasonal cycle. To the extent that the values are serially correlated the signifi-

cance levels are inflated. Possible “remedies” include use of an “effective” degrees of freedom

(although strictly speaking this may not be valid), Monte Carlo simulation which incorporates the

serial dependence, transformation of the data to yield independent values (such as via time series

modelling techniques) or performing separate analyses for each month type (assuming indepen-

dence at one year lag). Regarding the second point possible remedies include standardizing the

values (dividing the anomalies by the standard deviation for the corresponding month) or per-

forming separate analyses for each month; if the nature of the relationship is seasonally dependent
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then only the latter approach is valid since the set with mixed month types represents an inhomo-

geneous sample.

Although this paper has dealt only with basic statistical methods there is certainly no restric-

tion on the application of resistant, robust and nonparametric techniques to more sophisticated

methods such as multiple linear regression, ANOVA, Empirical Orthogonal Function, canonical

correlation, singular value decomposition, cluster, discriminant or spectral analysis, for example.

One simple approach might be to apply resistant outlier removal as a pre-processing step. Another

approach is to substitute resistant estimators in the advanced procedure. The second approach

should be done only with caution since it may result in a change in the inherent properties of the

technique; for example do resistant variance components preserve the total variance? Instead it

may be necessary to change the nature of the technique in order to obtain resistance; in this regard

the reader is advised to examine the references highlighted in Appendix A.

In conclusion the methods and philosophy presented here are worthy of consideration in any

statistical analysis. Certain types of problems benefit more and some practically require these

techniques (such as data quality assessment and control). The challenge is issued here to investi-

gators to consider the implicit assumptions of the statistical techniques which they employ.
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APPENDIX A

Some Concepts, Theory and Considerations

Suggested reading

Some theoretical aspects are presented in this appendix in order to further motivate the alter-

native techniques promoted in this paper and to make it easier to understand their properties.

Much of the material for this paper has been drawn from several general reference books. The

three volume set which presents robust and resistant statistics in the context of “exploratory data
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analysis” (Mosteller and Tukey, 1977; Hoaglin et al., 1983; Hoaglin et al., 1985) is extensive and

accessible to anyone with a background in basic applied statistics; in particular, Hoaglin et al.

(1983) is especially recommended. Perhaps even more accessible since it is written with meteo-

rologists in mind, although narrower in scope is Bryan (1987). A very comprehensive yet accessi-

ble work is that of Barnett and Lewis (1994); it contains nearly fifty pages of references and in

particular would be a good starting point for topics not covered here such as multivariate or direc-

tional data. For the more theoretically inclined (in order of increasing difficulty) are Staudte and

Sheather (1990), Hampel et al. (1986) and Huber (1981) each of which presents a different flavor

to robust and resistant statistics. Most of the nonparametric techniques are drawn from Siegel and

Castellan (1988) which is a highly accessible, well organized text.

Some fundamental concepts

An overwhelming majority of common statistical tests and techniques are based on the as-

sumption that the observations are “iid”, i.e. independent and identically distributed. It is very im-

portant to note that the lack of independence (which is manifested as serial correlation) often

observed in meteorological and oceanographic data is not addressed by the techniques presented

herein. For a discussion of the consequences of serial correlation the reader is referred to Thie-

baux and Zwiers (1984) and Zwiers and von Storch (1995). The assumption that sample values

are identically distributed implies homogeneity, which in the time series perspective is statistical

stationarity. Inhomogeneity occurs if the data originate from more than one distribution. A special

case of this occurs when a few data values or outliers are far removed from the bulk of the data.

Outliers may be the result of an additional process(es) that occurs infrequently or may be due to

the contamination or distortion of legitimate values.

The terms robust, resistant and nonparametric are often used in the same context, however,

they should not be used interchangeably since they are distinct. While robustness refers to an in-

sensitivity with regard to an underlying assumed probability model, resistance refers to an insen-

sitivity to misbehavior of the data (Hoaglin et al., 1983). For example, the median is highly

resistant since a relatively few bad outliers will have no affect; however, it is not highly robust

since other estimators perform better (i.e. have smaller variance or sampling variability) when

considering a wide range of statistical distributions. By contrast the mean has both poor resistance

and poor robustness (Hoaglin et al., 1983). Nonparametric or distribution-free methods do not as-

sume that the data are distributed in any particular way (Siegel and Castellan, 1988); the popula-

tion parameters are not considered (Zar 1974). Usually, the only assumptions are that the data are
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independent and are drawn randomly from a continuous distribution. Nonparametric methods are

often (but not exclusively) based on ranks.

Resistance

A widely used measure of resistance is the breakdown point or breakdown bound which is

the minimum proportion of observations which can take the estimator to plus or minus infinity

(Staudte and Sheather, 1990); it is a fraction which ranges from 0.0 to 1.0 with higher values indi-

cating greater resistance. For example, the median has a breakdown bound of 0.5; the median re-

mains finite if up to one half of the values (on one side of the distribution) are dispatched to

infinity. In fact, the median has the highest breakdown bound among all location estimators which

treat observations on both sides of the estimate symmetrically (Hoaglin et al., 1983). Typically a

breakdown bound of 0.5 is as good as can be expected. By contrast the mean has a breakdown

bound of 0.0 and thus offers no resistance since even a single “bad” value can make the mean ar-

bitrarily large. Since an objective of this work is to provide quantitative as well as qualitative in-

formation, breakdown bounds are given (in Appendix B) as a simple measure of resistance in the

comparison of techniques. A more detailed measure of resistance is the influence function which

is a measure of the influence on the given estimator at each point in the distribution (Hoaglin et

al., 1983; Staudte and Sheather, 1990). Influence functions, while providing more detailed infor-

mation are not given in this paper in order to simplify the presentations; the interested reader is re-

ferred to Staudte and Sheather (1990) and references therein.

Efficiency

Another measure used widely to characterize statistical performance is efficiency which is a

ratio of variances (i.e. the sampling variabilities) of two different estimators of a quantity, or

equivalently a ratio of sample sizes (Siegel and Castellan, 1988). Efficiency is a measure of per-

formance relative to some standard. If for example (for a given sample size) an estimator has an

efficiency of 0.8 relative to some standard estimator, then the variance of the standard estimator is

80% of that of the variance of the estimator in question. Equivalently, the standard estimator re-

quires a sample size only 80% of that of the estimator in question in order to have the same vari-

ance as the estimator in question. While the efficiency may be any nonnegative number typically

the standard used is an estimator which is “optimal”; in this case the efficiency will not exceed

1.0. For a Gaussian distribution the efficiency of the median to the mean is about 64% and does

not vary greatly with sample size (Hoaglin et al., 1983). In this paper, as is commonly the case, ef-

ficiency is evaluated for a Gaussian distribution; generally speaking this is a pessimistic measure
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since the efficiencies of the alternative techniques presented here are usually larger (than 1) when

the data are not Gaussian.

Other useful variations on efficiency exist. Asymptotic relative efficiency is the limiting val-

ue of efficiency taken when the sample size tends to infinity (Staudte and Sheather, 1990); asymp-

totic efficiency, unlike efficiency in general is not a function of sample size. While the above

measures of efficiency are used in reference to estimates of parameters there is also a measure of

efficiency used in conjunction with statistical tests. The power efficiency of a test is the ratio of

sample sizes such that both tests have the same power (Siegel and Castellan, 1988). The power of

a test is the probability of correctly rejecting the null hypothesis in contrast to the significance

which is the probability of incorrectly rejecting the null hypothesis.

An attempt is made to provide (in Appendix B) some measure of efficiency for the proce-

dures presented in this paper. Many of these were taken from the cited references and some were

derived through simulation. As a result of the varied sources the efficiencies are of different types.

This is not a problem since generally the efficiencies vary much more between the different statis-

tical estimators or procedures than among the different types of efficiencies.

Remarks

Constancy of the underlying statistical distribution across a collection of observations has

been cited as one of the most fundamental assumptions shared by most common statistical meth-

odology. Resistant, robust and nonparametric techniques provide alternative procedures which re-

lax this assumption. This paper presents some of these alternative techniques, illustrating their

utility via example, and quantitative measures (breakdown bound and efficiency) derived from

statistical theory. The breakdown bound is a measure of resistance to misbehavior of the data

while efficiency measures the performance relative to some standard (usually a common paramet-

ric estimator/test assuming a Gaussian distribution). Typically resistance and efficiency are com-

peting demands; resistant procedures are less efficient when the underlying distribution is

Gaussian but provide much better results when the sample contains outliers or is otherwise non-

Gaussian. However, through the use of more sophisticated methods it is possible to gain consider-

able resistance while sacrificing only a little efficiency. Loosely speaking the breakdown bound

can be used to address the question “what do I gain by using an alternative technique when the

data are misbehaved?” while the efficiency addresses the question “what do I lose when the data

are well-behaved?”.

At this point a comment of some practical considerations seems in order. The alternative
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techniques presented in this paper have two associated computational drawbacks. First, they re-

quire the data to be ranked or sorted. Since it is common to archive data in map form (all locations

for a given time together) rather than in time series form (all times for a given location together) it

may be necessary as a preliminary step to re-organize a data set to the latter form. Second, these

techniques require more arithmetic computation. However, given the significant advancement in

computing speed and data archival capacity in recent years these concerns should not hinder the

use of the techniques described in this paper.

APPENDIX B

Properties (Breakdown Bounds and Efficiencies), Formulas and Technical Details

 This appendix presents the formulas and provides other details needed to implement the

methods presented in this paper along with relevant references. It also cites breakdown bounds

and efficiencies from the literature (where available); the reader may find these useful in compar-

ing the resistant methods to one another and to the traditional methods.

In a few instances efficiencies were not available in the literature and/or were of the different

types (of efficiencies) so Monte Carlo simulations using Gaussian random numbers were per-

formed in order to provide this information. The results of these simulations are given in Tables

B1 and B2 and are cited below when appropriate. It should be noted that the use of the Gaussian

reference in the efficiency simulations presented here is a conservative approach towards evaluat-

ing resistant alternatives; as shown by simulations (Hoaglin et al., 1983; Staudte and Sheather,

1990) when the underlying distribution is not Gaussian resistant estimators are typically more ef-

ficient (sometimes considerably) than the traditional ones. This remark is also applicable to the

cited efficiencies which are Gaussian as well.

Median

 The median is a simple estimator of location with high resistance (breakdown bound is 0.5;

Staudte and Sheather, 1990) and an efficiency of about 0.64 (Hoaglin et al., 1983); see also Table

B1 for efficiencies. The median (M) is the “middle” value of a distribution and is estimated (from

a sample of n values) by:

M = X(n+1)/2 n odd (B1)

= (Xn/2 + X(n/2)+1) / 2 n even.

Pseudo-standard deviation (based on the interquartile range)

A simple estimate of scale is the pseudo-standard deviation. One way to define a pseudo-

standard deviation (sps) is based on the interquartile range (IQR). This scale estimator has a break-
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down bound of 0.25 (Staudte and Sheather, 1990) but an efficiency of only 0.37 (Staudte and

Sheather, 1990); see also Table B1. The interquartile range is defined as:

IQR = q0.75 - q0.25 (B2)

where q0.75 (q0.25) is the upper (lower) quartile. If the sample size (n) is even then the upper (low-

er) quartile is the median of the largest (smallest) n/2 observations. If the sample size is odd then

the upper (lower) quartile is the median of the largest (smallest) (n+1)/2 observations. The pseu-

do-standard deviation (sps) based on the interquartile range is:

sps = IQR / 1.349. (B3)

For a Gaussian population the standard deviation is identically equal to the pseudo-standard devi-

ation defined in this manner.

An asymmetric pseudo-standard deviation can be defined for the lower (upper) half of the

distribution by replacing the IQR in B3 with twice the distance between the median and the lower

(upper) quartile; its efficiency is 0.17 for a sample size of 30 (see Table B1).

Biweight mean and standard deviation

The biweight (Hoaglin et al., 1983) is a more sophisticated estimator belonging to the cate-

gory known as redescending estimators. Its influence function returns to zero at some distance

away from the center of the distribution; this distance is determined by a parameter (c). The bi-

weight mean (Xbi) is highly resistant (a breakdown bound of 0.5; Hoaglin et al., 1983) and fairly

efficient (roughly 0.9 as determined by simulations herein; see Table B1). The biweight standard

deviation (sbi) is also highly resistant (a breakdown bound of 0.5; Hoaglin et al., 1983) and fairly

efficient (0.87 for a sample size of 20; Hoaglin et al., 1983); see also Table B1 for efficiencies of

the biweight standard deviation and its asymmetric version.

The biweight estimate is a weighted average such that weighting decreases away from the

center of the distribution. All values beyond a certain critical distance from the center (controlled

by the parameter “c”) are given zero weight. A “c” value between 6 and 9 is recommended (Hoa-

glin et al., 1983); for the Gaussian case c = 6 (9) censors values more than 4 (6) standard devia-

tions from the mean. In this paper c = 7.5 (censors values more than 5 standard deviations away)

has been used. The censoring is performed using preliminary (resistant) estimates of location

(median) and scale (median absolute deviation) which are used to determine the weights.

First the median (M) and median absolute deviation (MAD) are estimated. The MAD is the

median of the absolute values of the deviations of the sample values from the median. A weight

(ui) corresponding to each of the n observations (Xi) is computed as follows:
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ui = (Xi - M) / (c • MAD) (B4)

For any ui  1.0 set ui = 1.0 to accomplish the censoring. The biweight estimate of the mean is:

(B5)

.

Similarly, the biweight estimate of the standard deviation is:

(B6)

.

It should be noted that since the biweight weighting function places more emphasis on val-

ues near the center (of mass) of the distribution, for distributions which are skewed (or otherwise

asymmetric) the biweight mean will be closer to the median than to the arithmetic mean.

An asymmetric biweight standard deviation can be defined for the lower (upper) half of the

distribution by computing the biweight standard deviation of a sample consisting of all of the val-

ues less (greater) than the biweight mean plus these same values reflected across the biweight

mean; its efficiency is 0.45 for a sample size of 30 (see Table B1). The reflection is analogous to

that by B16 except that the reflection is with respect to the biweight mean instead of the median.

Wilcoxon-Mann-Whitney distributional test (for location)

The Wilcoxon-Mann-Whitney test is used to test for equality of medians based on two sam-

ples whose parent populations are assumed to have equal variances. It is one of the most powerful

nonparametric tests; compared to the t-test its power efficiency is about 0.95 even for moderate

sample sizes and not much less for small sizes (Siegel and Castellan, 1988). It is resistant since it

is based on ranks.

In this test the two samples are combined and then ranks are assigned to the combined sam-

ple. The test statistic is based on the sum of the combined sample ranks corresponding to one of

the original samples. If the original samples are distributed differently then the sums of the ranks

for the two samples will be significantly different.

Suppose two samples consisting of values Xi and Yj have sample sizes of nx and ny, respec-

tively, where n = nx + ny. Rank the values in the set formed by combining the X and Y values. Let

SRx be the sum of the ranks of the X’s from this combined sample. Define the following quanti-

ties:

Scrit = nx (n + 1) / 2 (B7)

Xbi M X i M–( )
i 1=

n
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2

–( )
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2

–( )
2

i 1=

n
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 sSR = [nx ny (n+1) / 12]0.5 (B8)

 = +0.5  SRx < Scrit (B9)

-0.5  SRx > Scrit

 0.0  SRx = Scrit

z = (SRx - Scrit + ) / sSR (B10).

Note that  is a continuity correction. The test statistic z is asymptotically ~ N(0,1) (i.e. normal

with a mean of 0 and a standard deviation of 1). A two-tailed test using a normal probability table

can be used if either nx > 10 or ny > 10, otherwise use Table J of Appendix I in Siegel and Castel-

lan (1988).

Robust rank-order distributional test (for location)

The robust rank-order test is similar in nature to the Wilcoxon-Mann-Whitney test in that it

is also a test for equality of medians based on two samples; by contrast the rank-order test does

not assume that the parent populations have equal variance (i.e. it deals with the well known Beh-

rens-Fisher problem). It has essentially the same power as the Wilcoxon-Mann-Whitney test (Sie-

gel and Castellan, 1988). It is resistant since it is based on ranks.

 The robust rank-order test starts by computing the ranks of the combined sample. Next, for

each value in each sample it is necessary to count the number of observations from the other sam-

ple having a lower rank. Means and variances of these counts can be combined to form a test sta-

tistic.

Suppose two samples consisting of values Xi and Yj have sample sizes of nx and ny, respec-

tively, where n = nx + ny. Rank the values in the set formed by combining the X and Y values. For

each Xi define NXi to be the number of Y’s having a lower rank than Xi from this combined sam-

ple. Similarly, define NYj to be the number of X’s having a lower rank than Yj. Compute the fol-

lowing quantities:

(B11)

(B12)

(B13)

(B14)

NX N X i nx⁄
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(B15)

The test statistic z is asymptotically ~ N(0,1). A two-tailed test using a normal probability table

can be used if either nx > 12 or ny > 12, otherwise use Table K of Appendix I in Siegel and Castel-

lan (1988).

Symmetry test (for skewness)

A test of symmetry has been devised here by transforming a sample into two samples which

are then tested using a location (median) test such as the Wilcoxon-Mann-Whitney or robust rank-

order test. As noted above both of these tests have high efficiency and, since they are based on

ranks, are resistant. The transformation is based on reflecting half of the sample (for example the

half which is less than the median) across the median. If the original sample is symmetric about

the median then the upper half and the reflected lower half will have the same location (median).

To perform the transformation first estimate the median (M) of the original sample. Next partition

the original set of values into XL’s (XG’s) for values less (greater) than M. Transform the XL’s

into Y’s by reflecting them across the median:

Y = M + (M - XL) (B16).

The distributional test is then applied to the XG’s and Y’s.

Change-point test (based on location)

There are three aspects to the change-point procedure: the test for a single change-point

(given by Siegel and Castellan, 1988), the iterative scheme (developed here) to test for multiple

change-points and a diagnostic quantity, a signal to noise ratio (also developed here). Although

the efficiency of the (single) change-point test has not been analyzed explicitly, since it is based

on a Wilcoxon-Mann-Whitney type rank sum statistic it is likely to be highly efficient (Siegel and

Castellan, 1988). It is resistant since it is based on ranks.

Test for a single change-point. The change-point test presented here is used to determine if,

and locate a point in the time series at which the median changes. The test is based on summing

the ranks of the data from the beginning to each point in the series; each raw sum is adjusted by

the amount expected on average which is linearly proportional to the point in the time series. The

maximum of the adjusted statistic is assessed for significance.

The test procedure in testing for a single change-point in a series of Xi’s of length n begins

by finding the rank (Ri) corresponding to each Xi. At each point (i) in the series compute the sum

of the ranks from the beginning to that point (SRi) and from each of these an adjusted sum (SAi)

z 0.5 nxNX nyNY–( ) NX NY sNX
2

sNY
2

+ +( )
0.5

⁄=
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at each point:

(B17)

(B18)

Next find the maximum of the SAi’s (over points 1 to n-1). Suppose the maximum value of the

SAi’s occurs at point n1 and suppose W is the corresponding value of the sum of the ranks at n1

(i.e. SRn1); define the following:

(B19)

(B20)

(B21)

 = +0.5 W < Wcrit (B22)

-0.5 W > Wcrit

 0.0 W = Wcrit

z = (W - Wcrit + ) / sW (B23).

The test statistic z is asymptotically ~ N(0,1). A two-tailed test using a normal probability table

can be used if both n1 > 10 and n2 > 10, otherwise use Table J of Appendix I in Siegel and Castel-

lan (1988).

Multiple change-point procedure. The iterative procedure to search for multiple change-

points is based on application of the (single) change-point test followed by adjustment (see below)

of the series. In the subsequent iteration the change-point test is applied to the adjusted series. It-

eration continues as long as the significance of each new change-point is less than an a priori

specified level (for example 0.01). As an alternative or supplement in significance assessment the

robust rank-order test, which does not assume equality of variance, could be used. This supple-

mental test has been used for the examples shown here as well as other cases; while the signifi-

cance levels did differ somewhat (only by a significant amount when both tests indicated

extremely significant results) it was rare that the number of change-points selected would differ.

Besides significance there are several other stopping or selection criterion that have been used. It-

eration should stop if the change-point is one of the first or last ten points of the series since the

estimates are not reliable at the ends of the series. In the rare case of a repeated change-point seek

SRi R j
j 1=

i

=

SAi 2SRi( ) i n 1+( )–=

n2 n n1–=

W crit n1 n 1+( ) 2⁄=

sW n1n2 n 1+( ) 12⁄[ ]0.5
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a secondary maximum (of the SA statistic) which does not coincide with or lie adjacent to an ex-

isting change-point; stop if no such secondary maximum exists or if it is not significant.

For each iteration there is an ordered list of N change-points ( i ‘s). Each change-point is an

ordinal number corresponding to a value in the original time series (which consists of n points).

The list is cumulative so that each new point is inserted into the existing list. By defining addition-

al beginning ( 0 = 0) and ending ( N+1 = n) points in this list (which then has N+2 points) a set of

N+1 change-point segments can be defined. The kth segment goes from point 1 + k-1 to k.

The adjustment applied at each iteration involves normalization by subtracting from each

point the median of its segment. If desired (purely for cosmetic reasons) the median of the original

time series may be added back to each value. It should be noted that it is important to retain the

prior change-points in defining segments in the adjustment (i.e., to use an accumulated list). Ad-

justment by defining only two segments based on the most recent change-point can lead to non-

convergence in that often previously defined change-points are re-selected and the segment

adjustments oscillate. The reason is that by discarding previous change-points the two current

segments become a mixture of populations, the median of which may not be representative due to

the inhomogeneity. Also, proceeding by applying the single change-point test separately to each

new segment (i.e. subdivide the series as each new change-point is added) will not work well in

general because as the segment size decreases end effects become more dominant.

Because of a pathological condition it is possible that the change-point test may falsely iden-

tify as a change-point the center of a time series which has a trend. The reason is that the means of

the left and right sides of a trend line are different; in some sense this mimics the effect of a dis-

continuity. If the change-point test is applied iteratively to a series with a trend the procedure will

typically subdivide the trend segment in half several times, thus identifying several false change-

points. While this problem may not occur for weak trends, the tendency for this to occur increases

as the strength (magnitude of the correlation) of the trend increases. Detrending the time series

before subjecting it to the change-point procedure, although recommended when there is an obvi-

ous trend, is not a fool-proof solution since the problem will still occur if just a portion of the se-

ries has a trend.

A straightforward and very effective solution to this problem has been determined. After

each new change-point is identified it is necessary to compute two “noise-statistics” (defined be-

low under “Change-point signal to noise ratio”): one assuming the new change-point indicates a

discontinuity and the other assuming it is the center of a trend segment. If the former is smaller in
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magnitude than the latter then iteration continues as previously described. If the latter is smaller

then a trend adjustment is made, this (most recent) change-point (a “trend-point”) is deleted from

the change-point list and then iteration continues with the next application of the change-point

test. The trend adjustment consists of detrending (using resistant regression) the segment defined

by the two change-points (from the  list) adjacent to the trend-point.

Change-point signal to noise ratio. In order to have a quantitative measure of the discontinu-

ity implied by each change-point, a ratio, which can be thought of as a sort of resistant change-

point or discontinuity signal to noise ratio has been developed. This is a useful quantity which

supplements the significance values provided at each step of the iteration. Keep in mind that after

the first change-point, the significance values are somewhat artificial in that they apply to the ad-

justed rather than the original time series. As defined here, this measure is the ratio of the variance

associated with the discontinuity of the resistant mean (i.e. the “signal”) to the resistant variance

which remains after the discontinuity has been removed (i.e. the “noise”). In other contexts the

discontinuity variance might be considered noise as well. In order to have both high resistance

and efficiency, biweight estimators have been used.

Associated with a given change-point are two adjacent segments. First compute the biweight

estimates of the means of these two segments (XL and XR for the left and right segments). Sup-

pose the left and right segments consist of nL and nR values where n = nL + nR. Define an overall

mean (X) and then an estimate of the variance associated with the change-point discontinuity

(sD
2):

(B24)

(B25)

To compute the noise variance first normalize the left and right segments by subtracting XL (XR)

from all of the values in the left (right) segment. The noise variance (sN
2) is the (biweight) vari-

ance over the two normalized segments combined. Finally, the change-point or discontinuity sig-

nal to noise ratio (RDN) is:

(B26)

Note that the noise variance (sN
2)is the same as the “discontinuity noise variance” men-

X nLXL( ) nRXR( )+[ ] n⁄=

sD
2

nL XL X–( )
2

nR XR X–( )
2
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tioned above in association with testing for a false change-point due to a trend (trend-point). For

this purpose a “trend noise variance” can be defined in a similar fashion as the noise (biweight

variance) over the combined segment (combining the left and right segments) after it has been de-

trended (normalized) using resistant regression. Thus, these two noise quantities measure the

noise about a step-function change and the noise about a linear trend.

The RDN is a useful measure which can be used to eliminate change-points which are so

weak that they are “of no practical importance”. The minimum required value of RDN is of course

subjective and must be chosen by the user for each particular application; experience with this

method suggests a value of at least 0.05 or 0.10, although in some cases a value as high as 0.3 -

0.5 may be appropriate. Experience has also shown that the utility of RDN as a measure of the

strength of a change-point may be degraded somewhat as the length of the two adjacent segments

becomes larger. To lessen this effect one could compute RDN from segments which are not al-

lowed to exceed a certain limit (for example 50 points away from the change-point).

Spearman rank-order correlation

The Spearman rank-order correlation coefficient is a nonparametric measure of linear asso-

ciation based on correlation of ranks. Its efficiency compared to the Pearson product-moment cor-

relation is about 0.91 (Siegel and Castellan, 1988). It is resistant since it is based on ranks.

The first step is to rank (separately) the two samples which consist of n values each. Let RDi

be the difference of the ranks for the ith pair of values. Compute the sum of the rank differences

(SRD), Spearman correlation coefficient (rs) and test statistic (t) as follows:

(B27)

(B28)

(B29)

A two-tailed test may be performed using the fact that the test statistic is asymptotically ~ tn-2; it

is recommended that n be at least 20. For smaller sample sizes use Table Q of Appendix I in Sie-

gel and Castellan (1988).

Three-group resistant regression

Three-group resistant regression (Hoaglin et al., 1983) is based on dividing the sample into

three groups and fitting a line to the center points of the left and right groups. An iterative process

SRD RDi
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refines the estimate of the line. A special adjustment (B34) is needed to insure convergence; with-

out this adjustment the slope estimates oscillate between opposite signed values in certain patho-

logical cases. This method has a breakdown bound of 1/6 (0.17) since the median (which has a

breakdown bound of 1/2) is used in each of the three groups (Hoaglin et al., 1983). The efficiency

is not given in the literature but simulations performed here (see Table B2) suggest that the as-

ymptotic efficiency (relative to least squares regression) is roughly 0.5 and that the efficiency in-

creases as the sample size decreases (to about 0.9 for a sample size of 5). The iterative procedure

(i is the iteration number) is given below in the form of a set of (eight) steps.

(1) Partition the sample into three equal (or nearly equal) sized groups on the basis of the

ranks of the x-coordinates (abscissas).

(2) For the left and right groups compute the medians of the x-coordinates and the medians

of the y-coordinates. Define left and right summary points from the x and y medians:

(xL, yL) and (xR, yR).

(3) Compute the initial (i = 0) estimate of the slope (b) from the left and right summary

points:

b0 = (yR - yL) / (xR - xL). (B30)

(4) Compute the residual (resk) for each point (k) in the left and right groups using the esti-

mate of the slope (bi) for the current iteration (i):

resk = yk - (bi xk). (B31)

(5) Determine the median value of the residuals (resk’s) in the left (rli) and right (rri) groups

and compute their difference ( i):

i = rri - rli. (B32)

(6) If i = 0 then estimate the slope as follows and go to step 4:

b1 = b0 + 0 / (xR - xL)]. (B33)

If i > 0 then go to step 7.

(7) If i  <  (where  is some small number; 0.001 has been used here) then use the esti-

mate from the current iteration (bi) as the final slope estimate (b) and go to step 8.

Otherwise, if the algebraic signs of bi and bi-1 are different estimate the slope as follows

and go to step 4:

bi+1 = bi - i (bi - bi-1) / ( i - i-1)]. (B34)

Otherwise, estimate the slope as follows and go to step 4:

bi+1 = bi + i / (xR - xL)]. (B35)
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(8) Compute the residuals for all of the points (i.e. from all three groups) using B31 and the

final slope estimate (b). The estimate of the intercept (a) is the median of all of these re-

siduals. The three-group resistant regression line is:

. (B36)

Median of pairwise slopes regression

Median of pairwise slopes regression (Hoaglin et al., 1983) is based on computing the slope

between every possible pair of points and taking the median of these values. The breakdown

bound of this method is about 0.29 (Hoaglin et al., 1983). The efficiency is not given in the litera-

ture but simulations performed here (see Table B2) suggest that the asymptotic efficiency (relative

to least squares regression) is roughly 0.95 but that the efficiency may decrease to roughly 0.85-

0.90 for very small sample sizes (< 10).

It is necessary to compute the slope (bk) between each possible pair of points, (xi, yi) and (xj,

yj):

bk = (yi - yj) / (xi - xj) (B37)

If n is the number of points then there will be n(n-1)/2 pairwise slopes; in fact there may be less if

xi = xj for any i and j. The final slope estimate (b) is the median of the bk ‘s. Using this slope esti-

mate compute the residuals for all n points:

resi = yi - (b xi) (B38)

The intercept estimate (a) is the median of these residuals and the regression equation is:

. (B39)

ŷk a bxk( )+=

ŷi a bxi( )+=
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FIGURE LEGENDS

FIG. 1. Histogram of a sample of 50 values corresponding to the two outlier case of Table 1. This

sample is composed of 48 values generated using a Gaussian random number generator with a

mean of 1000 and a standard deviation of 10, plus the two outlying values of 1061 and 1052. Four

confidence intervals constructed from different location and scale combinations are plotted as

“whiskers”. These intervals are equal to location plus and minus four times the scale; for a Gauss-

ian sample the probability which lies outside this interval is less than 0.0002. The intervals are

(from top to bottom): population (population mean/standard deviation), biweight (biweight mean/

standard deviation), simple resistant (median/pseudo-standard deviation) and traditional (sample

mean/standard deviation).

FIG. 2. Time series of the intramonthly standard deviation of April 850 hPa specific humidity (g/

kg) at Jan Mayen Island from 1974-93 based on the traditional estimate of the standard deviation

(heavy dashed curve) and the biweight estimate (thin solid curve). The values used in the tradi-

tional estimates were quality controlled using two passes of the “outlier rejection method”; for

each pass values more than 5 standard deviations from the climatological mean were discarded.

FIG. 3. Histograms of April 850 hPa specific humidity (g/kg) from the Jan Mayen Island radio-

sonde station for 1988 (top), 1976 (middle) and 1980 (bottom). In order to facilitate cross-com-

parison the ordinate is expressed as a relative frequency (%) while the abscissa has been

normalized by subtracting the corresponding biweight mean for each of the three years.

FIG. 4. Histogram of a sample of all available values of the July 1000 hPa specific humidity (g/

kg) at Barrow, Alaska from 1973-89.

FIG. 5. Time series of monthly 200 hPa geopotential height anomaly (m) at Hong Kong from

1950-60. The monthly anomaly values (stars) are connected by a curve. The horizontal lines rep-

resent the biweight means of the two segments defined by the change-point (circled star).

FIG. 6. Histogram of the values from Fig. 5 before (top) and after (bottom) correction. Correction

consists of normalization by subtraction of separate means for the two segments in Fig. 5 defined

by the change-point.
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FIG. 7. Time series of monthly 700 hPa geopotential height anomaly (m) at Veracruz, Mexico

from 1952-92. The horizontal lines represent the biweight means of the segments defined by the

change-points (circled stars).

FIG. 8. Time series which is the average of the time series of Fig. 5 with two altered versions of it.

The two altered versions were produced by shifting the change-point (discontinuity) towards the

beginning or end of the series (by adding or subtracting the segment mean from the other segment

to some of the values). The location of the change-points for the three series are indicated by the

circled stars.

FIG. 9. Time series (curve connecting the dots) used for the correlation/regression example con-

sisting of the Hong Kong 200 hPa height anomaly for the thirty months from August 1951 to Jan-

uary 1954. This original time series was perturbed by adding 200 m to the last value (January

1954) as indicated by the large star in the upper right. The two thin (thick) lines correspond to the

original (outlier) case. The two solid (dashed) lines are based on least squares (median of pairwise

slopes) regression. The corresponding parameter estimates are given in Table 7.

FIG. 10. Time series of tropically averaged monthly temperature (light curves) and specific hu-

midity (dark curves) for 500 hPa (top) and 850 hPa (bottom) for 1963-88. Each curve has been

standardized to zero mean and unit variance. These curves represent a subset of the data shown in

Fig.3 of Sun and Oort (1995) and have been temporally filtered as described therein.

FIG. 11. Plot of temperature (T) vs. specific humidity (q) at 500 hPa using the data from the top of

Fig. 10. The abscissa and ordinate are standardized units. Each point is represented by a star ex-

cept for points during the unusual periods December 1967 to April 1968 (open circles) and No-

vember 1982 to July 1983 (open squares). Two regression analyses have been performed using all

of the values (stars, circles and squares); the solid line is based on least squares regression while

the dashed line is the median of pairwise slopes estimate.

FIG. 12. Rate of fractional increase of specific humidity (q) with temperature (T) as a function of

vertical pressure level (hPa) following Sun and Held (1996). The dark (light) curve is based on es-

timates derived from least squares regression (median of pairwise slopes resistant regression) ap-

plied to the observed data from Fig. 11. The dashed curve is a reference curve based on the

assumption of constant relative humidity and is solely a consequence of the Clausius-Clapeyron

relationship.
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 TABLE 1. Location and scale estimates based on a sample of 48 values generated from a Gaus-

sian random number generator with a mean of 1000 and a standard deviation of 10 augmented

with two reasonable values (X49, X50 = 1016, 1025), two outliers (X49, X50 = 1061, 1052) or one

outlier (X49, X50 = 1016, 1250). A histogram of the values for the two outlier case is displayed in

Fig. 1. Values in parentheses are Student’s t for location or ratio of standard deviations for scale.

The t-statistic tests the difference between the given location estimate and the known population

mean (1000) using the known population standard deviation of the mean for a sample size of 50

(10/500.5). The standard deviation ratio is the ratio of the given scale estimate to the known popu-

lation standard deviation (10).

____________________________________________________________________

X49 = 1016 X49 = 1061 X49 = 1016
X50 = 1025 X50 = 1052 X50 = 1250

____________________________________________________________________
Location

___________________________________________

Mean 1000.1 (0.1) 1001.6 (1.1) 1004.6 (3.3)

Median 1000.9 (0.6) 1000.9  (0.6) 1000.9 (0.6)

Biweight mean 1000.1 (0.1) 999.5 (-0.4) 999.8 (-0.1)

____________________________________________________________________

Scale
__________________________________________

Standard deviation 11.5 (1.1) 15.6 (1.6) 37.1 (3.7)

Pseudo-standard deviation 8.9 (0.9) 8.9 (0.9) 8.9 (0.9)

Biweight standard deviation 11.0 (1.1) 10.5 (1.1) 10.6 (1.1)

____________________________________________________________________
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 TABLE 2. Location, scale and maximum Z-score estimates based on a sample of ten values

consisting of the nine values: 1.01, 1.02, …, 1.09, plus 1000. Traditional is based on the conven-

tional estimates of the mean and standard deviation.

___________________________________________

Traditional Biweight
_____________________

Mean 100.95 1.05

Standard deviation 315.90 0.03

Maximum Z-score 2.85 34340.29

___________________________________________
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 TABLE 3. Location and scale estimates based on the sample of values displayed in Fig. 4.

_____________________________________

Mean 4.43

Median 4.06

Standard deviation 1.25

Pseudo-standard deviation 1.22

Lower pseudo-standard deviation 0.74

Upper pseudo-standard deviation 1.70

_____________________________________
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 TABLE 4. Confidence intervals and percent area outside those intervals for the data sample

(Barrow 1000 hPa specific humidity) corresponding to Fig. 4 and Table 3. The two confidence

levels correspond to nominal coverages of 50% and 95%. Three different intervals are construct-

ed: traditional (mean and standard deviation), simple symmetric resistant (median and pseudo-

standard deviation) and simple asymmetric resistant (median and asymmetric pseudo-standard de-

viation). The actual coverage outside the interval is given for the lower tail, upper tail and total

(sum of both tails).

______________________________________________________________________________
outside coverage (%)

______________________________________________________________________________

interval lower upper total
_____________________________________________

50% level 25.0 25.0 50.0

Traditional [3.58, 5.27] 25.9 23.5 49.4

Symmetric resistant [3.23, 4.88] 10.1 30.0 40.1

Asymmetric resistant [3.56, 5.21] 25.8 24.0 49.8

______________________________________________________________________________

95% level 2.5 2.5 5.0

Traditional [1.98, 6.88] 0.9 5.3 6.2

Symmetric resistant [1.67, 6.45] 0.7 7.7 8.4

Asymmetric resistant [2.61, 7.39] 2.0 2.7 4.7

______________________________________________________________________________
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 TABLE 5. Statistics computed for the entire time series (Hong Kong 200 hPa height) shown in

Fig. 5 (overall), separately for the left and right segments defined by the change-point and for the

entire time series after the separate segment means have been subtracted (corrected). The Z-scores

are computed for a hypothetical anomaly value of -90. (m) using the corresponding biweight

mean and standard deviation. For “corrected” the Z-scores differ depending on whether the hypo-

thetical anomaly was originally placed in the left or right segment (l/r) since the segments have

different means which are used to correct the anomaly.

_____________________________________________________________

overall left right corrected l/r
___________________________________

Biweight mean -0.17 30.09 -33.91 0.91

Biweight standard deviation 42.44 25.22 24.67 25.09

Z-score for -90. -2.12 -4.76 -2.27 -4.82/-2.27

______________________________________________________________
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 TABLE 6. Statistics computed for multiple change-point analysis applied to the time series

shown in Fig.7 (Veracruz 700 hPa height). Step refers to the iteration number, change-point

(point) is the ordinal number of the change-point (from left to right in Fig. 7), Z-statistic (Z) is the

asymptotic Z-statistic associated with the change-point test (see Appendix B for details), followed

by the probability associated with this Z value, and the change-point or discontinuity signal to

noise ratio (RDN).

________________________________

step point  Z  probability  RDN
________________________________

1 2 11.95 < 0.0001 1.25

2 1 8.37 < 0.0001 0.69

3 4 4.48 < 0.0001 1.09

4 3 3.81  0.0001 0.51

5 5 3.87  0.0001 0.29

_________________________________
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 TABLE 7. Correlation and regression estimates for the time series (shown in Fig. 9) consisting

of the Hong Kong 200 hPa height anomaly for the thirty months from August 1951 to January

1954. This original time series was perturbed by adding 200 m to the last value (January 1954).

Correlation and regression analysis was performed for both the original time series and the outlier

case using parametric (Pearson product-moment correlation and least squares regression) and re-

sistant (Spearman rank-order correlation and median of pairwise slopes regression) techniques.

The probability (prob) is associated with rejecting the null hypothesis that the correlation coeffi-

cient (corr) is zero. The slope and intercept (int) estimates are derived from the regression analy-

ses.

_________________________________________________

prob corr slope int

_________________________________________________

Parametric (original) 0.94 0.01 0.04 43.3

Resistant (original) 0.99 0.00 0.13 39.5

Parametric (outlier) 0.17 0.26 1.33 5.5

Resistant (outlier) 0.69 0.08 0.45 27.2

_________________________________________________
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TABLE B1. Efficiencies of selected estimators estimated from the variances over ten thousand

trials of Gaussian random numbers for two different sample sizes (5 and 30); the third column has

efficiencies (see elsewhere in Appendix B for the types) cited from the literature; the cited values

of 0.64, 0.37 and 0.87 are taken from Hoaglin et al. (1983), Staudte and Sheather (1990), and Ho-

aglin et al. (1983). The efficiency is defined as the ratio of the variance of the reference estimator

(mean for location and standard deviation for scale) to that of the selected estimator. By definition

the reference estimators have efficiencies of 1.0. Note the consistency of simulated and cited val-

ues as well as the relative lack of sensitivity to sample size (also confirmed by simulations not

shown for intermediate sizes). The efficiencies seem to be approaching the cited asymptotic val-

ues for a sample size of 30.

____________________________________________________________

n = 5 n = 30 cited

__________________________

Mean 1.00 1.00 1.00

Median 0.70 0.67 0.64

Biweight mean 0.83 0.93 -----

Standard deviation 1.00 1.00 1.00

Pseudo-standard deviation 0.66 0.39 0.37

Asymmetric pseudo-standard deviation 0.28 0.17 -----

Biweight standard deviation 0.78 0.84 0.87

Asymmetric biweight standard deviation 0.48 0.45 -----

____________________________________________________________
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TABLE B2. Efficiencies of slope estimates from two resistant regression methods (three-group

resistant regression and the median of pairwise slopes regression) estimated from the variances

over ten thousand trials of Gaussian random numbers for several sample sizes (5, 10, 20, 50, 100

and 1000). The simulation using pairwise slopes for a sample size of 1000 was not performed due

to the computational expense. The efficiency is defined as the ratio of the variance of the reference

estimator (least squares regression) to that of the selected estimator.

___________________________________________________________________________

sample size
_________________________________________________

5 10 20 50 100 1000
____________________________________________________________________________

Three-group 0.90 0.72 0.62 0.57 0.59 0.54

Median of pairwise slopes 0.88 0.88 0.91 0.97 0.95 -----

_____________________________________________________________________________


